What do Multilingual Neural Machine Translation Models Learn about Typology?

Ryokan Ri and Yoshimasa Tsuruoka

Abstract

How do multilingual models handle the multilingualism? In this work, we probed **multilingual neural machine translation (NMT) models** by **typological feature classification task**.

Dataset

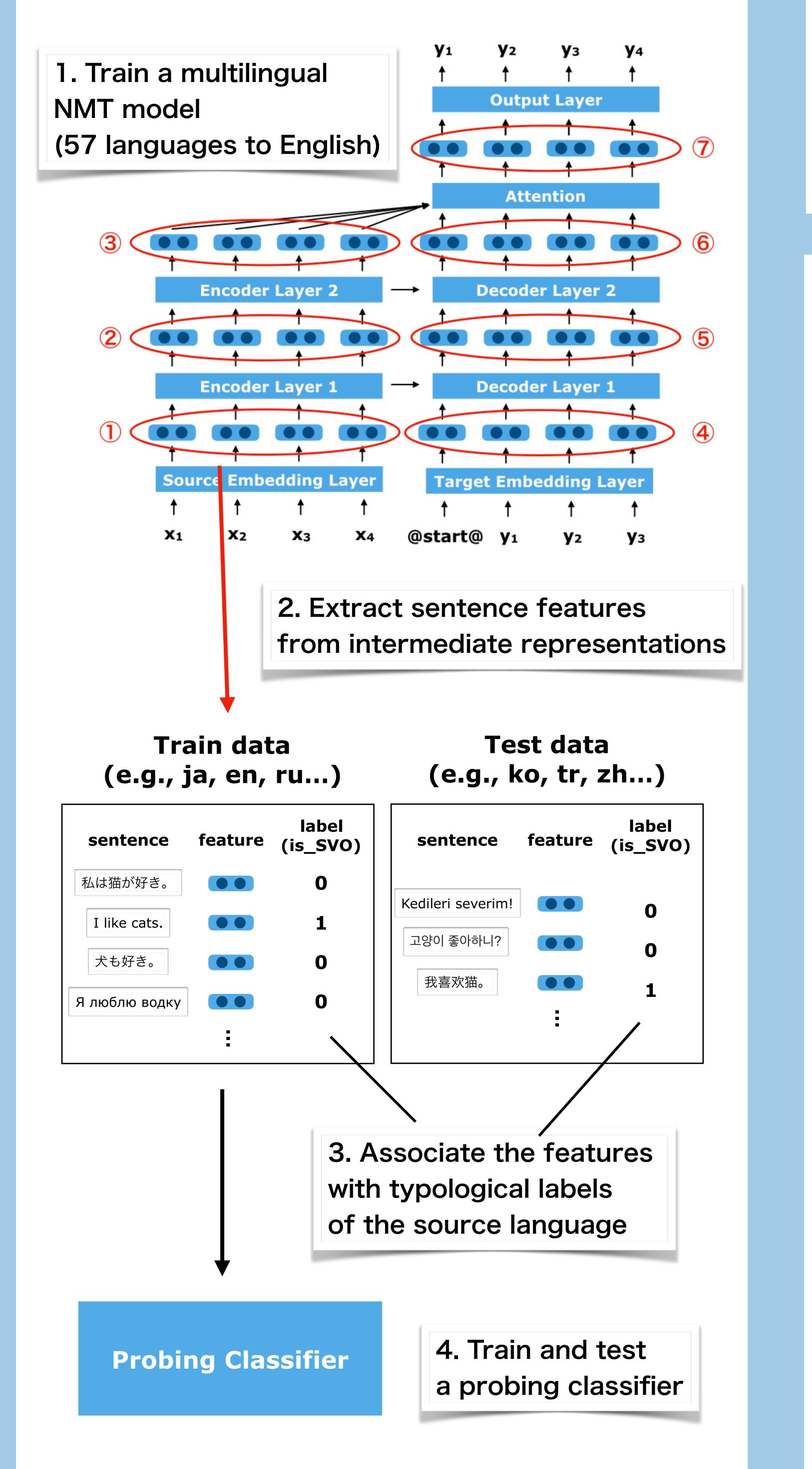
Bible Corpus: Translation of the Bible

 contains sentences with the same meaning in multiple languages

OF TOKYO

• Train: 23,555 sentences for each language

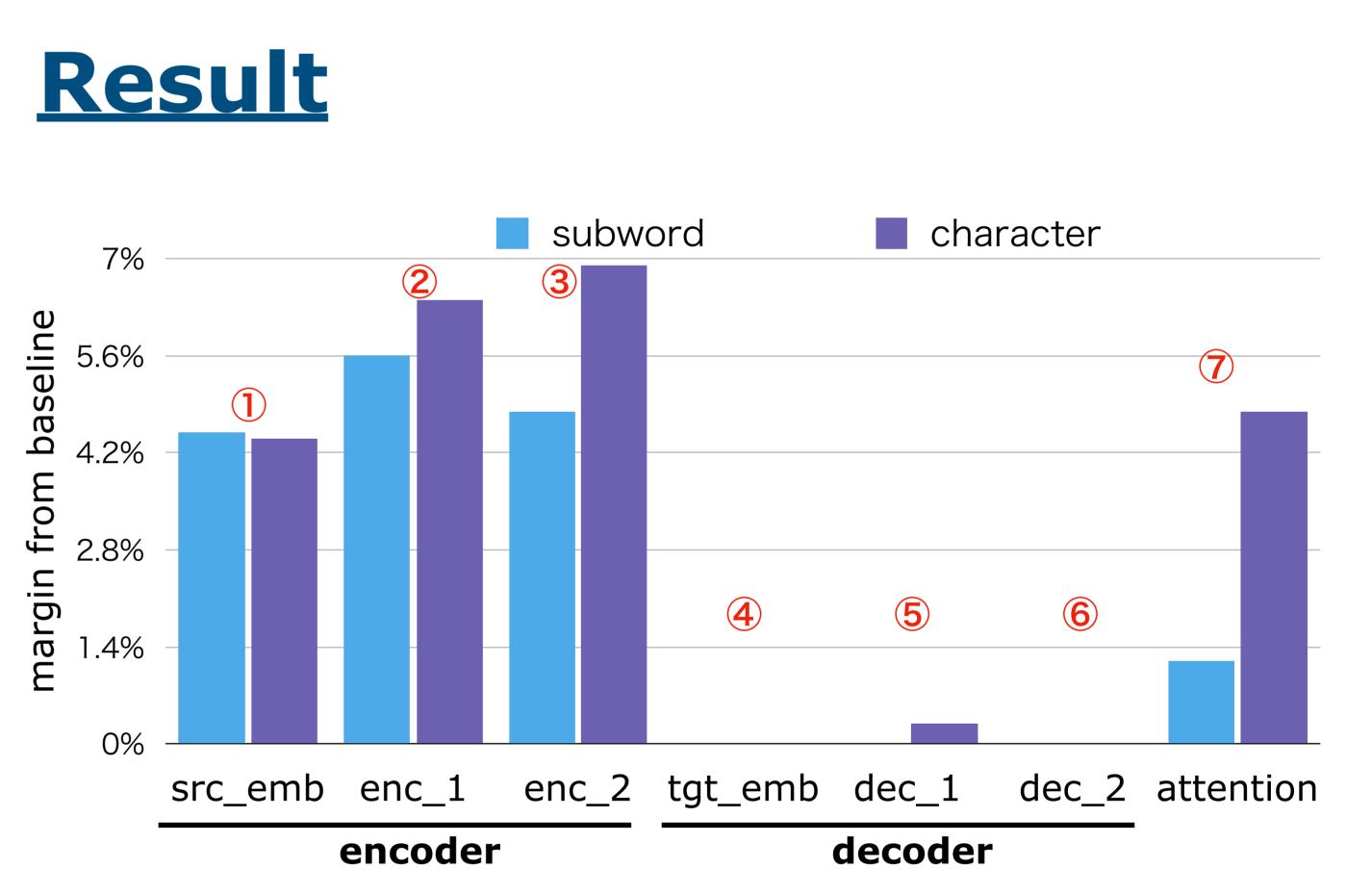
Experimental Procedure



(Dev: 455, Test 455)

URIEL database: The database for typology

- Used 103 syntactic features
- For missing data, predicted values are used (by kNN regressions based on phylogenetic or geographical neighbours).



 The encoder is aware of the source language, while the decoder is not. However, the attention module again introduce sourcedependent representation. This is undesirable if we expect the multilingual NMT to used shared meaning representation(interlingua).

Character-level models are better at capturing

typology, probably because of its morphological competence.

Top 5 improvements

Feature	Subword	Character	Gain
<u>S_ADJECTIVE_AFTER_NOU</u> N	73.33	85.09	11.76
S_ADJECTIVE_BEFORE_NOUN	77.63	87.76	10.13
S_INDEFINITE_WORD	61.81	70.76	8.94
<u>S_AD.IECTIV</u> E_WITHOUT_NOUN	65.67	73.85	8.17
S_TEND_DEPMARK	70.12	78.13	8.00
$S_{-}SVO$	85.97	81.47	-4.49
S_SUBORDINATOR_WORD_BEFORE_CLAUSE	92.30	86.75	-5.54
$S_{-}SOV$	87.75	81.65	-6.10
$S_OBJECT_AFTER_VERB$	96.44	89.99	-6.45
S_NEGATIVE_WORD_BEFORE_OBJECT	83.79	76.80	-6.98